Concepts and Formulas Trigonometric Functions

Trigonometric Equations

Trigonometric equations are equations using trigonometric functions with unknown angles.

e.g., $\cos \theta = 0$, $\cos^2 \theta - 4 \cos \theta = 1$.

The value of the unknown angle that satisfies a trigonometric equation is called a solution.

Principal Solution

If the equation has a variable $0 \le x < 2\pi$, then the solutions will be termed as principal solutions.

General solution

A general solution is one that involves the integer 'n' and yields all trigonometric equation solutions. Also, the character ' Z ' is used to denote the set of integers.

Important Results:

1. $\sin \theta = 0 \Leftrightarrow \theta = n \pi$ 2. $\cos \theta = 0 \Leftrightarrow \theta (2n + 1) \frac{\pi}{2}$ 3. $\tan \theta = 0 \Leftrightarrow \theta = n\pi$ 4. $\sin \theta = \sin \alpha \Leftrightarrow \theta = n\pi + (-1)^n \alpha$, where $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 5. $\cos \theta = \cos \alpha \Leftrightarrow \theta = 2n\pi \pm \alpha$, where $\alpha \in \left[0, \pi\right]$ 6. $\tan \theta = \tan \alpha \Leftrightarrow \theta = n\pi + \alpha$, where $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 7. $\sin^2 \theta = \sin^2 \alpha \Leftrightarrow \theta = n\pi \pm \alpha$. 8. $\cos^2 \theta = \cos^2 \alpha \Leftrightarrow \theta = n\pi \pm \alpha$. 9. $\tan^2 \theta = \tan^2 \alpha \Leftrightarrow \theta = n\pi \pm \alpha$. 10. $\sin \theta = 1 \Leftrightarrow \theta = (4n + 1)\frac{\pi}{2}$ 11. $\cos \theta = 1 \Leftrightarrow \theta = 2n\pi$ 12. $\cos \theta = -1 \Leftrightarrow \theta = (2n + 1)\pi$. 13. $\sin \theta = \sin \alpha$ and $\cos \theta = \cos \alpha \Leftrightarrow \theta = 2n\pi + \alpha$